admin / 17.08.2018

Угловая скорость

Свойства

Угловая скорость (синяя стрелка) в одну единицу по часовой стрелкеУгловая скорость (синяя стрелка) в полторы единицы по часовой стрелкеУгловая скорость (синяя стрелка) в одну единицу против часовой стрелки (вектор угловой скорости направлен навстречу направлению взгляда наблюдателя)

Вектор мгновенной скорости любой точки абсолютно твёрдого тела, вращающегося с угловой скоростью ω → {\displaystyle {\vec {\omega }}} , определяется формулой:

v → = , {\displaystyle {\vec {v}}=,}

где r → {\displaystyle {\vec {r}}} — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определённом расстоянии (радиусе) r {\displaystyle r} от оси вращения можно считать так: v = r ω . {\displaystyle v=r\omega .} Если вместо радианов применять другие единицы измерения углов, то в двух последних формулах появится множитель, не равный единице.

  • В случае плоского вращения, то есть когда все векторы скоростей точек тела всегда лежат в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути — если плоскость вращения заведомо известна — может быть заменена скаляром — проекцией на ось вращения, то есть на прямую, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается. Однако в общем случае угловая скорость может менять со временем направление в трёхмерном пространстве, и такая упрощенная картина не работает.
  • Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю). Равномерное вращение является частным случаем плоского вращения.
  • Производная угловой скорости по времени есть угловое ускорение.
  • Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчёта, отличающихся положением начала отсчёта и скоростью его движения, но двигающихся равномерно прямолинейно и поступательно друг относительно друга. Однако в этих инерциальных системах отсчёта может различаться положение оси или центра вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).
  • В случае движения точки в трёхмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:

ω → = r → × v → ( r → , r → ) , {\displaystyle {\vec {\omega }}={\frac {{\vec {r}}\times {\vec {v}}}{({\vec {r}},{\vec {r}})}},} где r → {\displaystyle {\vec {r}}} — радиус-вектор точки (из начала координат), v → {\displaystyle {\vec {v}}} — скорость этой точки, r → × v → {\displaystyle {\vec {r}}\times {\vec {v}}} — векторное произведение, ( r → , r → ) {\displaystyle ({\vec {r}},{\vec {r}})} — скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы ω → , {\displaystyle {\vec {\omega }},} подходящие по определению, по-другому — произвольно — выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) — эта формула не верна для угловой скорости всего тела (так как даёт разные ω → {\displaystyle {\vec {\omega }}} для каждой точки, а при вращении абсолютно твёрдого тела вектора угловой скорости вращения всех его точек совпадают). Однако в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.

  • В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) абсолютно твёрдого тела декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.
  • При измерении угловой скорости в оборотах в секунду (об/с) модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеренной в герцах (Гц), то есть в таких единицах ω = f . {\displaystyle \omega =f.} В случае использования обычной физической единицы угловой скорости — радианов в секунду — модуль угловой скорости численно связан с частотой вращения так: ω = 2 π f . {\displaystyle \omega ={2\pi f}.} Наконец, при использовании градусов в секунду численная связь с частотой вращения будет: ω = 360 ∘ f . {\displaystyle \omega ={360^{\circ }f}.}

Связь с конечным поворотом в пространстве

  • Пусть поворот, изменяющийся во времени, задан величиной угла θ ( t ) {\displaystyle \;\theta (t)} и ортом оси конечного поворота в пространстве n → ( t ) . {\displaystyle {\vec {n}}(t).} Тогда угловая скорость, соответствующая этому повороту, равна

ω → = n → θ ˙ + n → ˙ sin ⁡ θ + n → × n → ˙ ( 1 − cos ⁡ θ ) . {\displaystyle {\vec {\omega }}={\vec {n}}{\dot {\theta }}+{\dot {\vec {n}}}\sin \theta +{\vec {n}}\times {\dot {\vec {n}}}(1-\cos \theta ).}

  • Если поворот задан матрицей поворота T i j = n i n j + ( δ i j − n i n j ) cos ⁡ θ − n k ϵ i j k sin ⁡ θ , {\displaystyle T_{ij}=n_{i}n_{j}+(\delta _{ij}-n_{i}n_{j})\cos \theta -n_{k}\epsilon _{ijk}\sin \theta ,} где δ i j {\displaystyle \;\delta _{ij}} — символ Кронекера, ε i j k {\displaystyle \varepsilon _{ijk}} — символ Леви-Чивиты (суммирование ведётся по правилу Эйнштейна от 1 до 3), выражение для элементов которой через θ {\displaystyle \;\theta } и n → {\displaystyle {\vec {n}}} могут быть получены, например, с помощью формулы Родрига, то угловая скорость равна

ω i = 1 2 ε i j k T j n T ˙ k n . {\displaystyle \omega _{i}={\frac {1}{2}}\varepsilon _{ijk}T_{jn}{\dot {T}}_{kn}.}

  • Если для описания поворота используется кватернион, выражаемый через угол θ {\displaystyle \;\theta } и орт оси поворота n → {\displaystyle {\vec {n}}} как q = ( cos ⁡ ( θ / 2 ) , n → sin ⁡ ( θ / 2 ) ) , {\displaystyle q={\bigl (}\cos(\theta /2),{\vec {n}}\sin(\theta /2){\bigr )},} то угловая скорость находится из выражения ( 0 , ω → ) = 2 q ˙ q ¯ . {\displaystyle \left(0,{\vec {\omega }}\right)=2\,{\dot {q}}\,{\overline {q}}.}
  • В случае, когда поворот описывается с помощью вектора V → = n → tg ⁡ ( θ / 4 ) , {\displaystyle {\vec {V}}={\vec {n}}\operatorname {tg} (\theta /4),} изменяющегося во времени, обозначим W → = d V → / d t ( W i = d V i / d t ) , {\displaystyle {\vec {W}}=d{\vec {V}}/dt\ {\bigl (}W_{i}=dV_{i}/dt{\bigr )},} а также T i j 1 / 2 = n i n j + ( δ i j − n i n j ) cos ⁡ ( θ / 2 ) − n k ϵ i j k sin ⁡ ( θ / 2 ) {\displaystyle T_{ij}^{1/2}=n_{i}n_{j}+(\delta _{ij}-n_{i}n_{j})\cos(\theta /2)-n_{k}\epsilon _{ijk}\sin(\theta /2)} — матрица половинного поворота ( T i j 1 / 2 T j k 1 / 2 = T i k ) , {\displaystyle \;{\bigl (}T_{ij}^{1/2}T_{jk}^{1/2}=T_{ik}{\bigr )},} V 2 {\displaystyle \;V^{2}} — квадрат модуля вектора V → . {\displaystyle {\vec {V}}.} Тогда угловая скорость:

ω i = 4 T i j 1 / 2 W j 1 + V 2 . {\displaystyle \omega _{i}={\frac {4T_{ij}^{1/2}W_{j}}{1+V^{2}}}.}

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчиныСпортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Источник: https://www.translatorscafe.com/unit-converter/ru/velocity-angular/1-11

FILED UNDER : Разное

Submit a Comment

Must be required * marked fields.

:*
:*