admin / 20.10.2018

Топливно воздушная смесь

1. Идеальное (оптимальное) соотношение бензина и воздуха в образовании топливо-воздушной смеси

Точно подать бензин легче, чем точно подать воздух. Погрешности при расчете поступившего воздуха приводят к проблемам в работе двигателя. Погрешности будут меньше, если воздух поступает равномерным потоком. Равномерность потока создается :

  • гладкими стенками воздуховода
  • плавными поворотами воздуховода (1- 2)
  • отсутствием пульсаций и завихрений (убрать из потока все, что приводит к этому, особенно фильтр «нулевик»)

Если по линии подачи бензина все в порядке, то главным в оптимальном образовании смеси является ДМРВ (датчик массового расхода воздуха ). На основе его сигналов ЭБУ подает бензин. На выходе стоит «контролер» (лямбда зонд) и «нюхает» выхлопные газы. Он определяет чего много — бензина или воздуха и сообщает ЭБУ. ЭБУ корректирует подачу бензина.

Когда вы меняете расходомер на неродной ( VAF на MAF), то:

  • конструктивно меняете русло для потока воздуха — это очень важно
  • должны решить проблему с датчиком температуры входящего воздуха ( если он отсутствует, то зимой не заведется)
  • и главное, поставить «переводчика» для ЭБУ, чтобы ЭБУ понимало какой сигнал старого расходомера соответствует сигналу нового расходомера ( это такие устройства как конвертер Pilot VAF/MAF, MAF Emulator 3, «Датчика Виннерса» (Winners)).
  • после всех изменений смесь требуется настроить.

Это супер-пупер-мега-ПАНАЦЕЯ ! Немножко утомила меня возня с расходомером или как часто его называют лопатой. Полазив по любимому лэнкрузер.ру наткнулся на ссылочку Pilot Engineering.
Почитал у них местный форум и пришел к выводу что это супер-пупер-мега-ПАНАЦЕЯ! Плюс этого конвертора в гибкости настройки. Он даже ШПЛЗ поддерживает! Конвертер Pilot + BLUETOOTH — настройка смеси Благодарю умных, честных, темпераментных за отзывы и распространение информации .

Датчик температуры входящего воздуха

Для решения проблемы датчика температуры входящего воздуха есть два пути:

  1. поставить вместо него резистор и ЭБУ будет думать, что у вас круглый год лето +20
  2. расковырять VAF и достать из него датчик, и установить его во впускной коллектор (по результатам этот вариант лучше)

Двигатель

У двигателя несколько режимов работы:

  • холостой ход и прогрев
  • нейтралка, КПП не подключена
  • режим холостого хода с подключенной коробкой, стоя на светофоре
  • равномерное движение
  • ускорение, торможение — плавное
  • ускорение (WOT), торможение — резкое
  • режим в горку, максимальная нагрузка
  • режим с горки, облегченная нагрузка

Резкое ускорение, торможение — это резкое воздействие на поток воздуха (дроссельная заслонка). Получаем пульсации и завихрения.

Резкое ускорение — воздуха много, а бензина мало. Добавить бензина в экстренном порядке — должен включиться ускорительный насос.

Резкое торможение — воздуха мало, бензина много. Добавить воздуха в экстренном порядке — должен открыться дополнительный канал подачи воздуха.

Для обоих режимов — должен сработать «замедлитель» открытия дроссельной заслонки. Узел дроссельной заслонки снабжен системой плавного сброса газа — чисто механической системой-демпфером, сбрасывающим обороты не резко, а плавно при отпускании педали акселератора. Вот, похоже, именно его регулировка и позволила, по крайней мере сейчас проверено, что это именно так, обеспечить плавное снижение оборотов двигателя без передергивания.

Решение проблемы при плохой работе двигателя:

  • проверить все, что связано с подачей бензина
  • проверить все, что связано с подачей воздуха

Алгоритм действий:

  1. Считать ошибки.
  2. Если п.1 не выполнили, то логически определяем чего больше бензина или воздуха. Либо по запаху из выхлопной трубы. По цвету свечей.
  3. Определили — бензина мало.
  4. Идем по линии подачи бензина :
  • механика (износ детали, деформация, ускорительный насос,бензонасос,топливный фильтр, форсунки, сеточка бензонасоса,бензокран, внутри крана маленькое проходное отверстие. Исправляется: заменой крана или сверлением.),
  • электрика (контакты, провода, правильное подключение),
  • срабатывание по времени (ключи форсунок, угол зажигания, трамблер, свечи),
  • срабатывание от температуры -хуже на горячую (какая-то деталь нагрелась и зазор между ней и соседней уменьшился, появилось трение либо зазор увеличился и не стало контакта — ремень ГРМ, натяжной ролик ролик просто болтался,нарушалась синхронность распредвалов с коленвалом и двигатель глох. , обводной ролик, пружинка, ДТВВ, ДТОЖ )

5. Воздуха — мало.

6. Идем по линии подачи воздуха :

  • механика (воздушный фильтр замаслен, клапан на корпусе воздушного фильтра не работает, заслонка зима/лето не работает, закручен полностью винт базового количества воздуха на холостом ходу, находящийся на корпусе дроссельной заслонки, ДМРВ, подсосы воздуха в обход ДМРВ .)

Работает на Ура! Эта вещь стоит своих денег. Я поставил пилот, вполне доволен, машинку не узнать. Плюс конвертера это возможность подстройки под изменения с двигателем. Еще можно диагностировать смерть двух датчиков (дмрв и ЛЗ) что тоже бывает необходимым. В общем эта вещь стоит своих денег, я убедился уже на практике. Сейчас мне стало намного приятней ездить без разного рода подергуш и плавающего хх. Машина едет так, как и было задумано и это несомненно меня радует! И, поверь, не более менее, а работает на ура!Конвертер Pilot + BLUETOOTH — настройка смеси Благодарю умных, честных, темпераментных за отзывы и распространение информации .

Настройка смеси воздух/топливо (AFR)

Цель настройки — получить максимальную мощность и максимальный момент при резком ускорение, с умеренным расходом в городском режиме и на трассе.

Для настройки смеси есть два пути:

  1. подстроечным резистром — ограниченный диапазон ( «Датчика Виннерса» (Winners)). До этого, обязательно выставить базовые настройки через ВАГКОМ.
  2. с помощью программного обеспечения ( MAF Emulator 3, Pilot VAF/MAF ). ПО от MAF Emulator 3 настраивается по широкополосной лямбде, а ПО от конвертера Pilot VAF/MAF по обычной лямбде.

Настройку осуществлять поэтапно:

  1. Настройка ХХ,
  2. далее настройка разгонов.
  3. Самый правильный является режим в горку.
  4. Если вы сможете максимально эффективно настроить двигатель в этом режиме, то считайте что настройка удалась. Ни в коем случае не настраивайте на нейтрале весь диапазон оборотов.

Чем выше обороты тем топливо-воздушная смесь должна быть богаче, и тем угол зажигания должен быть ранним.

Не забудьте перед началом работы механический угол опережения зажигания выставить по стробоскопу.

100% успех! Электронный эмулятор+ BLUETOOTH Лямбда зонда Катализатора 2-х канальный Pilot 1. Есть настройка параметров эмуляции
2. Есть логирование — запись всех параметров эмуляции во время движения авто
3. Тип двигателя: любой 4. Установка: в разрыв цепи
5. Программирование: Да
6. Сохраняется диагностика
7. Перед отправкой клиенту проходит обязательную настройку параметров и проверку работоспособности.
8. Поддержка Euro 3, 4, 5, 6
9. Отсутствие вмешательства в программную часть ЭБУ
10. Гарантия — 1 год Электронная обманка Pilot + BLUETOOTH. Благодарю умных, честных, темпераментных за отзывы и распространение информации .

Источник: https://bykm.ru/nastrojka-smesi-afr

Subaru Impreza WRX Десептикон ›
Бортжурнал ›
Тонкая настройка смеси воздух/топливо AFR и датчик лямбда

ОСНОВНОЙ РАЗДЕЛ

— Сделайте глубокий вдох и не дышите.
— Не дышите.
— Не дышите.
— Не дышите.
— Выносите.
— Следующий!

Соотношение

Начнем с первого понимания, что именно мы настраиваем и почему. Наш интерес здесь представляет отношение воздуха к топливу (AFR) подаваемому в камеру сгорания. Этот показатель влияет на поведение процесса горения и может служить как для безопасный показателей, направленных на работу двигателя при средних нагрузках так и на работу на пределе, с максимальной отдачей мощности. Даже небольшое изменение параметров соотношения смеси кардинально изменит поведение машины. Важно понимать «как, зачем и для чего» вы меняете эти параметры.

Соотношение бензина/воздуха, в котором вся смесь полностью сгорает считается стехиометрической (идеальной). Для бензина / дизеля соотношение равно примерно 14.7 частей воздуха к 1 части топлива (14.7:1).

Смесь, с большим (чем идеальное) соотношением топлива к кислороду называют богатой, соответственно смесь где больше воздуха (больше чем в идеальной) — бедной.

По сути, практически во всех случаях, богатая смесь должна быть целью, это намного безопаснее и надежнее для двигателя т.к. бедная смесь быстрее воспламеняется и возрастает нагрузка на двигатель.

Таблица 1. Влияние соотношения смеси на поведение двигателя
AFR | Лямбда | Результат
14:1 | 1 | Стахиометрия (идеал)
12.8:1 |0,87 | Безопасное увел. крут.момента
12.2:1 | 0,83 | Среднее увел. крут.момента
11.76:1 |0,8 | Значительное увел. момента
11.01:1 |0,75 | Топл. сгорает в цил-ре очень быстро

В таблице приведены основы влияния AFR на поведение двигателя и динамику машины и должны служить в качестве общего руководства при определении соотношения воздух/топливо на мощность автомобиля с полностью открытым дросселем.

Показание лямбда-датчика
вы заметили в таблице что лямбда выдает какие-то циферки.
Откуда они берутся?
Цифра лямбды это отношение текущей смеси к идеальной, т е. (идеальная как мы помним 14,7:1)
значит для смеси 12,8:1 лямбда будет равна (12,8 разделить на 14,7) — 0,87.
Сравниваем с таблицой — и правда!

Имея показания лямбда-датчика в реальном времени можно получить любой результат исходя из потребностей и залитого топлива, т.к. под каждое топливо нужно свое соотношение топливо/воздух.

Существует два типа датчика лямбды :
Широкополосый и узкополосый.

Узкополосный

Кислородный датчик традиционно используется большинством производителей OEM являются узкополосный датчик. Этот датчик используются для измерения AFR в очень узком диапазоне (отсюда и название), и только с точностью до этой узкой области. Датчик, как правило, имеет 0-1 выходного напряжения и будет наиболее точным по лямбда-1 (стехиометрической).

Такой датчик точно показывает лямбду только в диапазоне от 14,2 до 15,0.
Если параметры смеси выше или ниже диапазона, то датчик по-просту игнорируется мозгами машины, ведт он абсолютно не точно показывает данные вне диапазона а значит его показатели не могут служить критерием для корректировки смеси.
Топливная система автомобиля по-просту не «слушает» этот датчик в экстремальных условиях, таких как полностью открытая дроссельная заслонка или тяжелые нагрузки, где условия являются слишком быстро меняющимися и отношения топлива/воздуха в смеси выходит за пределы диапазона лямбда-датчика.

Цель этих датчиков, установленных на заводе-производителе, является управление транспортным средством в размеренных режимах работы, например езда по шоссе, а также мониторинг ошибок системы управления подачей топлива транспортным средством. Эти операции имеют важное значение для поддержания надлежащего уровня выбросов и максимизации экономии топлива и производительности.

Как мы видим из таблицы №1 — для максимальной мощности и крутящего момента нужно соотношение топлива/воздуха далеко за пределами рабочего диапазона узкополосого лямбда-датчика.
Однако, узкополосый датчик намного точнее работает в своем диапазоне, чем работает в его диапазоне широкополосый датчик, по этому наверное их и ставят вместе. Широкополосый — для мяса, узкополосый — для езды.

Широкополосый лямбда-датчик

Широкополосные датчики имеют гораздо более широкий диапазон точности от 7,35 до 22,39. Это позволяет увеличить диапазон датчика для измерения соотношения топливно-воздушной смеси в любых условиях работы двигателя. Эта информация имеет решающее значение при настройке вашего двигателя.

Вот мы и попытались ровно въехать в понимание топливной смеси, и хоть получилось у нас наверняка криво, но мы будем стараться!

СУБАРИСТЫ ЗА СВОБОДНЫЕ ЗНАНИЯ!

Источник: https://www.drive2.ru/l/4062246863888625404/

Состав горючей смеси

Горючая смесь – это смесь распыленного и частично испаренного топлива с воздухом поступающая в цилиндры во время работы двигателя. После того как горючая смесь смешается внутри цилиндра с отработавшими газами, оставшимися от предшествующего рабочего цикла («остаточными» газами), ее называют рабочей смесью.

В процессе сгорания углерод и водород топлива соединяются с кислородом воздуха. В зависимости от количества воздуха, поступающего в цилиндр двигателя, сгорание может быть полным и неполным. При полном сгорании образуются продукты, состоящие из углекислоты, водяных паров, избыточного кислорода и азота.

В случае недостатка кислорода только часть углерода топлива сгорает полностью и образует углекислоту; остальной углерод сгорает не полностью, образуя окись углерода.

Для полного сгорания 1 кг бензина требуется около 15 кг (или 12 м2) воздуха. Такое количество воздуха называют теоретически необходимым, а смесь содержащую такое количество воздуха — нормальной. Если в смеси содержится свыше 15, но не более 17 кг воздуха на 1 кг топлива, ее называют обедненной, а при содержании воздуха свыше 17 кг — бедной. Смесь, в которой содержится на 1 кг топлива меньше 15, но не ниже 12 кг воздуха, является обогащенной, а менее 12 кг — богатой.

Соотношение количества топлива и воздуха в смеси влияет на мощность и топливную экономичность двигателя.

Двигатель, работающий на нормальной смеси, развивает мощность, близкую к максимальной, и расходует топливо в пределах нормы.

На обогащенной смеси двигатель развивает максимальную мощность, но расходует несколько больше топлива, чем на нормальной смеси.

При работе на богатой смеси мощность двигателя снижается, а расход топлива повышается. Во время работы на такой смеси из выпускной трубы двигателя идет черный дым, указывающий на неполноту сгорания топлива (в отработавших газах содержится несгоревший углерод топлива в виде сажи). Очень богатая смесь, содержащая 5 и менее частей воздуха на 1 часть топлива, не воспламеняется, и на ней двигатель работать не может.

Обедненная смесь с соотношением количества топлива и воздуха около 1:16 обеспечивает наибольшую по сравнению со смесями других составов экономичность двигателя, но его мощность несколько ниже, чем при нормальной смеси.

Бедная смесь вызывает резкое уменьшение мощности двигателя, так как скорость ее горения очень мала. При работе двигателя на бедной смеси возрастает расход топлива, появляются перебои в работе цилиндров, вспышки в карбюраторе («чихание») и двигатель перегревается. Если на 1 кг топлива приходится 21 кг и более воздуха, смесь теряет способность воспламеняться и двигатель не работает.

Во время пуска и прогрева холодного двигателя смесь должна быть богатой (соотношение количеств топлива и воздуха 1:8 — 1:10), так как значительная часть содержащегося в ней распыленного топлива не испаряется, а оседает на стенках впускного трубопровода и цилиндров, образуя на них жидкую пленку.

Для устойчивой работы прогретого двигателя на малых оборотах холостого хода требуется обогащенная смесь.

Когда двигатель работает с неполной нагрузкой, смесь должна быть обедненной, что обеспечивает экономичность работы двигателя, а при полной нагрузке — обогащенной, чтобы двигатель развивал максимальную мощность.

При нормальном горении топлива в цилиндрах скорость распространения пламени от свечи зажигания по всему объему камеры сгорания составляет 30 — 40 м/сек. В этом случае давление в цилиндре повышается быстро, но плавно.

Детонационным горением, или детонацией, называют горение смеси со скоростью, достигающей 2000 м/сек и выше, носящее характер взрыва.

Признак детонации — появление звонких металлических стуков в цилиндрах.

Детонация вредна, поскольку вызываемое ею резкое повышение давления в цилиндрах может быть причиной крошения подшипников коленчатого вала, повреждения поршней и других деталей двигателя. Кроме того, при детонации топливо сгорает не полностью, вследствие чего падает мощность и ухудшается экономичность двигателя.

Таблица 1. Неисправности топливного насоса москвича 412

Источник: https://studopedia.su/20_3221_sostav-goryuchey-smesi.html

Виды горючих смесей и топливо

Система питания бензиновых двигателей служит для приготовления горючей смеси из паров бензина и воздуха. Горючая смесь составляется из определенного количества бензина и воздуха. Для образования горючей смеси бензин должен находиться в парообразном состоянии.

Различают три вида смеси бензина с воздухом:

· горючая смесь — смесь паров бензина с воздухом;

· рабочая смесь — смесь, которая образуется в результате смешивания горючей смеси с остаточными отработавшими газами внутри цилиндров двигателя;

· эмульсия — смесь жидкого бензина с воздухом. Такая смесь образуется в каналах карбюратора.

Основным топливом для бензиновых автомобильных двигателей служит бензин. Основными свойствами бензина являются:

· испаряемость,

· теплотворная способность

· антидетонационная стойкость.

Антидетонационная стойкость является очень важным свойством бензина и определяет возможную степень сжатия двигателя. Детонация— это взрывное сгорание рабочей смеси в камере сгорания. При нормальном сгорании фронт пламени распространяется со скоростью 20…40 м/с, а давление в цилиндре составляет 3…4 МПа (30…40 кгс/см2). При детонации скорость распространения горения достигает 2500 м/с, а давление — 10… 15 МПа (100… 150 кгс/см2).

Причиной возникновения детонации рабочей смеси может быть применение низкооктанового топлива, сильный перегрев двигателя, перегрузка, установка раннего зажигания. Детонацию можно устранить путем уменьшения подачи топлива или переходом на более низкие передачи.

При детонационном сгорании смеси в двигателе слышны резкие металлические стуки и звон, объясняемые ударами волн высокого давления о стенки камер сгорания, цилиндров и днищ поршней и возникновением вибрации в деталях. При детонации рабочей смеси под действием очень больших давлений на днище поршней создаются ударные нагрузки и начинают стучать поршневые пальцы, поршневые кольца в канавках, поршни о зеркало цилиндров, коренные и шатунные подшипники. Вибрируют все детали двигателя. При детонации наблюдается дымный выпуск с искрами вследствие неполного сгорания топлива и закипания воды в системе охлаждения из-за усиленной теплоотдачи стенкам камер сгорания и цилиндрам. В результате резко снижаются мощность и экономичность двигателя. Длительная работа при детонационном сгорании может привести не только к повышенному износу деталей двигателя, но и к их поломке или образованию крупных дефектов в виде трещин и изгиба деталей с последующим их разрушением.

Показателем, характеризующим антидетонационные свойства бензина, является его октановое число. Чем больше октановое число бензина, тем меньше он детонирует и тем большая степень сжатия может быть принята для двигателя. Для повышения октанового числа и уменьшения опасности возникновения детонации в двигателях, имеющих повышенные степени сжатия, к бензину подмешивают антидетонаторы.

Наиболее сильным антидетонатором является этиловая жидкость, которую добавляют к бензину в объеме не более 1,5…3,0 мл на 1 л бензина. Этилированные бензины ядовиты, поэтому обращаться с ними нужно осторожно (применяются в основном в сельском хозяйстве).

Детонационная стойкость определяется на специальном двигателе с использованием чистых углеводородов изооктана и гептана. Октановое число изооктана условно равно 100, а у нормального гептана стойкость принимают равной нулю. На двигателе определяют моменты детонации используемого топлива, а затем из изооктана и нормального гептана подбирают такую смесь, которая будет детонировать так же, как и испытуемое топливо. Процент содержания изооктана в этой смеси и дает октановое число испытуемого бензина.

Промышленность вырабатывает бензины марок АИ—80, -92, -95 и -98. Буква А в маркировке означает, что бензин автомобильный. Цифры показывают октановое число. Чем выше октановое число, тем больше стойкость бензина к детонации. Буква И указывает, что октановое число определено исследовательским способом. У остальных бензинов октановое число определяется по моторному методу.

Источник: https://studopedia.org/12-3720.html

Для работы двигателю с искровым зажига­нием (SI) требуется топливовоздушная смесь с определенным соотношением количества воздуха и топлива (отношение воздух/топливо). Идеальное, теоретически полное сго­рание топлива имеет место при отношении масс 14,7:1 (стехиометрическое отношение), т.е для сгорания 1 кг топлива требуется 14,7 кг воздуха. Или: топливо объемом 1 л полно­стью сгорает в присутствии 9500 л воздуха.

Топливовоздушная смесь

Удельный расход топлива в значитель­ной степени зависит от соотношения воздух/топливо (см. рис. «Влияние коэффициента избытка воздуха на удельный расход топлива и неравномерную работу двигателя при постоянной эффективной мощности» ). Для обеспечения действительно полного сгорания топлива требуется избыточное количество воздуха и, следовательно, как можно более низкий расход топлива. Однако здесь имеют место ограничения, зависящие от воспламеняе­мости и доступного времени сгорания смеси.

Также состав смеси влияет на эффектив­ность снижения выбросов токсичных ве­ществ с отработавшими газами. В настоящее время с этой целью используется трехком­понентный каталитический нейтрализатор, который действует с максимальной произ­водительностью при стехиометрическом со­отношении воздух/топливо. Это может зна­чительно снизить вероятность повреждения компонентов системы очистки отработавших газов. Поэтому современные двигатели, когда это позволяют условия работы, рабо­тают при стехиометрическом составе смеси.

Для определенных условий работы двига­теля требуется адаптация состава смеси. Так, изменение состава смеси требуется при пуске холодного двигателя. Отсюда следует, что си­стемы смесеобразования должны обеспечи­вать работу двигателя в различных режимах.

Коэффициент избытка воздуха λ

В качестве показателя отличия фактического состава смеси от теоретически необходимого массового отношения (14,7:1) был выбран коэффициент избытка воздуха λ (лямбда). Коэффициент λ равен отношения массы по­даваемого в двигатель воздуха к массе воз­духа, необходимой для обеспечения стехио­метрического состава смеси.

λ = 1: масса подаваемого в двигатель воз­духа равна теоретически необходимой массе.

λ < 1: недостаток воздуха и, следова­тельно, богатая топливно-воздушная смесь. Максимальная выходная мощность двига­теля имеет место при λ = 0,85 — 0,95.

λ > 1: имеет место избыток воздуха, т.е. смесь становится обедненной. При работе на бедной смеси эффективная мощность двигателя падает, при этом обеспечивается снижение расхода топлива. Максимально до­пустимое значение λ — «предел возникновения пропусков зажигания при обеднении смеси» в значительной степени зависит от конструкции двигателя и используемой системы смесео­бразования. При использовании такой смеси она долго не воспламеняется, а процесс сго­рания происходит с нарушениями, сопрово­ждаемыми неравномерной работой двигателя.

На двигателях с искровым зажиганием (SI) и впрыском топлива во впускной трубопро­вод, при постоянной выходной мощности двигателя, минимальный расход топлива достигается в зависимости от двигателя при избытке воздуха 20 — 50 % (λ = 1,2 -1,5).

На рис. «Влияние коэффициента избытка воздуха на содержание токсичных веществ в отработанных газах» показаны зависимости удель­ного расхода топлива, а также содержания различных токсичных веществ в отработавших газах от коэффициента избытка воздуха (при постоянной выходной мощности двигателя). Из этих графиков видно, что нельзя выбрать идеальное значение коэффициента λ, при ко­тором все рассматриваемые показатели были бы в максимальной степени приемлемы. Для двигателей с впрыском топлива во впускной трубопровод для обеспечения «оптималь­ного» расхода топлива при «оптимальной» эффективной мощности приемлемым явля­ется значение λ в диапазоне 0,9-1,1.

В двигателях с прямым впрыском топлива и послойным распределением заряда смеси имеют место иные условия сгорания топлива, поэтому предел обеднения смеси наступает при значительно более высоких значениях λ. В диапазоне частичных нагрузок эти двигатели могут работать при значительно более высо­ком коэффициенте избытка воздуха (до λ = 4).

Для нормальной работы трехкомпонентного каталитического нейтрализатора необходимо точное соблюдение λ = 1 при нормальной рабочей температуре двигателя. Выполнение этого условия возможно при обеспечении точ­ной дозировки массы поступающего воздуха, включая и возможные добавки.

Для получения оптимального процесса сгорания в двигателях с системой впрыска то­плива во впускной трубопровод необходимо обеспечивать не только впрыск точного коли­чества топлива, но и однородность топливо­воздушной смеси, что достигается эффектив­ным распылением топлива. Если эти условия не соблюдаются, во впускном трубопроводе или на стенках камеры сгорания образуются большие капли топлива, которые полностью не сгорают, что приводит к повышенным вы­бросам несгоревших углеводородов.

Системы смесеобразования

Системы впрыска топлива или карбюра­торы служат для приготовления топливо­воздушной смеси, наилучшим образом обе­спечивающей эффективную работу двигателя в заданном режиме. Системы впрыска топлива, особенно их электронные версии, лучше при­способлены для получения оптимальных режимов. Они позволяют снизить расход то­плива и повысить эффективную мощность двигателя. Все более строгие требования в от­ношении снижения токсичности отработавших газов заставили производителей автомобилей практически полностью отказаться от кар­бюраторных топливных систем и перейти на электронные системы впрыска топлива.

До начала этого столетия в автомобильной промышленности практически исключи­тельно использовались системы, в которых смесеобразование происходит вне камеры сгорания (система с впрыском топлива во впускной трубопровод, см. рис. «Схематическое изображение системы впрыска топлива» , а). В на­стоящее время все шире применяются си­стемы с внутренним смесеобразованием, т.е. с прямым впрыском топлива в камеру сгора­ния (система прямого впрыска топлива для бензиновых двигателей, см. рис. «Схематическое изображение системы впрыска топлива» , Ь), позво­ляющие еще больше снизить расход топлива и повысить выходную мощность двигателя.

В следующей статье я расскажу про адаптивный круиз-контроль.

Источник: http://press.ocenin.ru/toplivovozdushnaya-smes-v-benzinovom/

Топливовоздушная смесь

От чего зависит мощность двигателя, сколько нужно сжигать топлива и воздуха, чтобы получить максимальную мощность или максимальную экономичность? Разберемся в этом на понятном языке.

Для того чтобы понять всю картину, для начала опишу как двигатель определяет сколько нужно налить топлива, сколько воздуха попало в цилиндр, сколько в итоге сгорело и как вообще прошло это горение.

Современный двигатель имеет для этого некоторые датчики, считывая их параметры, корректирует свои дальнейшие действия. Будем рассматривать все по порядку, в двигатель затягивается воздух создаваемым разряжением поршней (или затягивается турбиной) через датчик массового расхода воздуха (MAF) который позволяет определить количество воздуха (учитывая его температуру и плотность). Следующий на пути датчик угла открытия дроссельной заслонки, за ним датчик давления во впускном коллекторе + в совокупности с датчиком коленвала считающий обороты двигателя, позволяют определить нагрузку. Вот как, все это позволяет корректировать смесь делая ее оптимальной, к тому же можно проследить за исправностью работы какого-либо датчика в этой цепочке, не начал ли кто-то из них врать.

На этом еще не все, воздух попал в цилиндр и компьютер дал указ форсункам на столько-то миллисекунд открыться, впрыснув топливо. Форсунки должны уложиться в срок пока на это дает согласие датчик распределительного вала. Вот топливовоздушная смесь находится в цилиндре, остаётся ее поджечь, компьютер анализируя все перечисленные датчики и внесенные корректировки опрашивает еще кучу электроники из них состояние кондиционера генератора и прочего, идет к последней инстанции датчику коленвала и определяет момент зажигания. Топливо загорается, и компьютер следит как протекает реакция, продолжая все время слушать датчик детонации в случае его недовольства, вносятся дополнительные корректировки к углу опережения зажигания, сдвигая его на более поздний. Сгоревшая смесь вылетает в выхлопную трубу где поджидает кислородный датчик анализирующий количество кислорода в выхлопных газах, кстати тоже может указать на плохую работу выше указанных датчиков, сообщая компьютеру что посчитал он все плохо и вообще его закидало бензином, и он скоро покроется сажей и откажется так работать.

Важно качественно контролировать топливовоздушную смесь, идеальной будет стехиометрическая. Внесем немного ясности, что такое стехиометрия и как это слово применимо к процессам протекающих в ДВС.

Допустим у нас есть два вещества топливо и воздух, каждое из них имеет свою массу. В результате реакции окисления(горения) топливовоздушной смеси образуются другие вещества и выделяется энергия. Стехиометрической реакцией будет та, в которой вся масса воздуха и вся масса топлива про взаимодействуют и на выходе останется только продукты горения. В ДВС все обстоит иначе, невозможно создать идеальные условия горения, неточные относительно теоретических расчетов показания датчиков, не полное перемешивание топлива с воздухом, часть топлива конденсируется или оседает на стенках деталей. Цепная реакция, протекающая в момент возгорания, распространяется равномерно, а не по всему объему, в результате чего часть кислорода вступает в реакцию с другими соединениями образуя отходы затрачивая энергию, тем самым, не вступив в реакцию с топливом. Упустим разговоры про экологию и химию. Из этого следует, что максимальная мощность двигателя достигается на более богатой смеси, компенсируя потерю осевшего топлива, которое очень долго горит и чаще догорает уже в трубе или в катализаторе. Богатая топливовоздушная смесь более насыщенная и уже больше имеет пригодного для реакции газообразного топлива.

Значения лямбды за графиком приводит к пропускам зажигания.

На графике очень хорошо видна зависимость мощности от качества топливовоздушной смеси, которое в состоянии отследить лямбда, (меньше число лямбда- богаче смесь и наоборот) при условии, что момент зажигания оптимальный. Оптимальным углом считается момент воспламенивший смесь и при последующем горении быстро расширяющиеся газы имеют максимальное давление на поршень, когда он уже опустился на 15-17 градусов ниже мертвой точки. При чрезмерно раннем зажигании поршень продолжает сжимать и без того огромное давление над поршнем, затрачивая на это энергию и время. Так же возникновение детонации до ВМТ несет разрушительные последствия. Детонация протекает во много раз быстрее обычного процесса горения, охватывая большую площадь камеры сгорания мгновенно и при очень высокой температуре, разрушая детали двигателя. Взрывная волна отражается от стенок цилиндра многократно издавая металлический стук, датчик детонации улавливает это явление. Чаще всего детонация возникает из-за перегрева острых кромок в камере сгорания, тарелок клапанов, образуя калийное зажигание. более выражена на низких и средних оборотах, когда скорость топливовоздушной смеси не столь велика и подвержена нагреву, предусматриваются специальные вытеснители в камере сгорания, позволяющие лучше перемешать воздух с топливом, выталкивая клином из щели между головкой и поршнем, когда он подходит к ВМТ придавая завихрение и концентрацию в районе свечи.

В следующей статье рассмотри графики как это происходит в живую на реальном автомобиле. Неисправности датчиков двигателя

Источник: https://enginepower.pro/blogi/76-toplivovozdushnaya-smes.html

FILED UNDER : Разное

Submit a Comment

Must be required * marked fields.

:*
:*